Nonlinear integro-differential equations of bending of physically nonlinear viscoelastic plates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations

In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...

متن کامل

Periodic Homogenization for Nonlinear Integro-Differential Equations

In this note, we prove the periodic homogenization for a family of nonlinear nonlocal “elliptic” equations with oscillatory coefficients. Such equations include, but are not limited to Bellman equations for the control of pure jump processes and the Isaacs equations for differential games of pure jump processes. The existence of an effective equation and convergence the solutions of the family ...

متن کامل

Integro-differential Equations with Nonlinear Directional Dependence

We prove Hölder regularity results for a class of nonlinear elliptic integro-differential operators with integration kernels whose ellipticity bounds are strongly directionally dependent. These results extend those in [9] and are also uniform as the order of operators approaches 2.

متن کامل

Instability of nonlinear viscoelastic plates

This paper investigates the instability of an isotropic, homogeneous, simply supported rectangular plate subjected to a prescribed periodic in-plane load. The material is assumed to be viscoelastic and obey the Leaderman nonlinear constitutive relation. The equation of motion is derived as a nonlinear integro-partial-differential equation, and is simplified into a nonlinear integro-differential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Materials Science and Engineering

سال: 2020

ISSN: 1757-899X

DOI: 10.1088/1757-899x/869/5/052048